The need to address IR in undergraduate education has been a topic of debate for some time with various studies reporting a profound lack of IR teaching or worrying levels of knowledge amongst students (Atiiga et al. 2017; Alsafi et al. 2017). These and similar findings eventually led to the publication of ‘IR Curriculum for Medical Students’ in 2012 (Shaikh et al. 2016). Despite initial enthusiasm, a systematic review in 2019 concluded that 7 years later, the report has failed to make a substantial impact, with IR curricula remaining largely untouched (Emin et al. 2019).
The structure and delivery of undergraduate curriculum are critical determinants of the type of medical graduates we produce. Amongst the extensive skills and knowledge doctors are expected to carry to their first jobs, one attribute that remains neglected is clinical acumen. This can be defined as the ability to navigate through clinical decision-making, utilizing skills and knowledge while remaining cognizant of the roles of different clinical specialties. We postulate that clinical acumen is the product of holistic undergraduate training, that is, enabling students to think beyond textbooks and exposing them to the realities of clinical practice. The absence of such elements subsequently leads to graduates with an underdeveloped clinical acumen.
As shown in Fig. 1, the cyclical course design lent itself for introducing stations with increasing complexity in a step-wise fashion. A unique aspect of our course was the implementation of an in-vivo porcine simulation module. With the exception of the in-vivo module, many of the simulation stations were inspired from previous studies (Rock et al. 2010; Sideris et al. 2015). This was perceived by students as ‘inspiring’, offering the ‘best possible insight into IR’. While fluoroscopy is a skill that no junior doctor will be expected to undertake, this module succeeded in its purpose by instigating a thought process in students’ minds about the capabilities of IR and its place in clinical practice. Relevantly, 68 % of students did not consider IR as a potential career prior to the course, the main reason for this being a mere absence of opportunities to see the specialty in practice. If in-vivo simulation can make up for this lack of opportunities, does it not deserve a place in undergraduate curricula? Nevertheless, we do recognize both the cost and ethical implications educators and policy-makers may encounter when trying to adopt such practices.
The study employed a comprehensive set of outcomes before and after the course, in order to quantify students’ clinical acumen in relation to IR. With the goal of this course being to improve students’ attributes across all four outcomes, the positive results have reassured us of its effectiveness. Although no correlations were identified between pre-course variables and DOPS scores (Table 2), we postulate that in order for potential associations to be revealed, a formal, larger scale curriculum may be needed.
Moreover, the plurality of the metrics not only helped capture a spherical view of the current landscape in undergraduate IR training, it also enabled us to examine intricate relationships between different metrics such that those which merit greater attention are prioritised in future efforts. For example, confidence improvement was not associated with performance improvement in any way – a finding which again pointed to the limited size of our sample. This signifies the need for larger studies and dissemination of the course to validate potential associations.
Associations between confidence improvement and DOPS scores (Table 3), albeit non-significant, did show a positive correlation, which begs the question: would a bigger sample alter the significance levels? If so, confidence levels can be assumed to positively impact on student performance. As seen in previous studies, positive performance can influence motivation in certain specialties (Patel et al. 2013; Drolet et al. 2014; Day et al. 2016). In other words, one should not regard the aim of this course as solely performance-boosting. Rather, this initiative should be regarded as confidence-enhancing, offering students opportunities to explore previously unexplored areas. Be it in the form of confidence improvement, or indeed performance improvement, such metrics may encourage students to consider new careers like IR, or at least reconsider what we suggest could be ‘immature’ career choices. These ideas are echoed in earlier studies, where early introduction of IR lectures has increased both awareness and interest in the specialty (Shaikh et al. 2016; Branstetter IV et al. 2007).
Furthermore, with the majority never having completed an attachment to IR, our study found that there is a massive lack of knowledge about IR’s role in clinical practice. As supported by previous studies, ignorance about the specialty ultimately leads to a lack of interest in it altogether (Alsafi et al. 2017; Emin et al. 2019). Therefore, implementation of a carefully revised curriculum which enables individuals to experience the practical side of IR, can be catalytic in demystifying the specialty and increasing recruitment. In fact, more than half of the participants supported the idea of introducing more IR modules or placements. However, being a multi-centre study, the study sample does carry an element of self-selection and potentially some polarisation of opinions.
Moving forwards, there are two important questions to address; the first one being the very ways in which we go about introducing such courses in existing medical school curricula. This adaptation can take various forms, either through more isolated ‘simulation days’ or more systematic approaches, supplementing the latter with placements in IR departments. IR deserves dedicated placements of, perhaps, shorter duration compared to core medical specialties, but still of enough duration to raise students’ awareness of what IR entails. This, in turn, requires rethinking of what seems like an ‘overcrowded’ curriculum, going as far as challenging the current duration of placements like Vascular surgery, and recognising the fact that as IR expands, such areas are constricting. The second challenge concerns the lack of recognition of IR as an official specialty, at least in the UK. This forms the main hinge of hinderance for all efforts to ‘make the case’ for more IR teaching, which is why recent talks for segregation of IR as a standalone specialty are so crucial. Specialty status will expedite the creation of learning outcomes for undergraduates specific to IR and embrace courses like the current study.