Case report
In January 2021, a 65-year-old man came to our institution because of an AAP after refusing medical advice to undergo surgery in another center.
The patient was hypertensive and had a history of past smoking and coronary artery bypass graft surgery (CABG) 18 years earlier with a left internal mammary artery graft on the left anterior descending artery, a radial graft on the obtuse marginal-2 artery, and saphenous vein grafts (SVGs) on the obtuse marginal-1 and diagonal arteries. He had suffered transient sudden severe chest pains for 1 min 3 months previously, followed by progressive weakness, chest pains, and dyspnea.
Upon admission to the hospital, the patient had a temperature of 37.2 °C, a blood pressure of 128/72 mmHg, a heart rate of 73 beats per minute, a respiratory rate of 14 breaths per minute, and an oxygen saturation level of 95% in room air. He was alert and in good general condition.
Cardiac auscultation revealed a regular heart rhythm without any murmurs, and chest auscultation was clear. An abdominal examination showed nothing unusual. The peripheral pulses were present (2+). Laboratory results demonstrated a hemoglobin level of 13.9 g/dL, a hematocrit level of 39.3%, and a platelet count of 153,000/mm3. Additionally, urinalysis and liver function test results were normal.
Aortic computed tomography angiography with contrast demonstrated a contrast-filled and outpouching wall, 44 × 33 mm in thickness, with mural irregularity. The wall protruded from the anterior aspect of the proximal portion of the ascending aorta, in favor of a pseudoaneurysm (neck diameter = 17 mm) at the substernal location just before the proximal anastomosis site of the first SVG (occluded) (Fig. 1).
A transthoracic echocardiogram revealed a left ventricular ejection fraction of 40%, a top-normal-sized (3.4 cm) ascending aorta, and a large (3.2 cm) echo-free space adjacent to the anterior wall of the ascending aorta just after the sinus of Valsalva connected with a 9 mm neck to the ascending aorta, suggestive of a large aortic pseudoaneurysm (Fig. 2).
Technique
In the catheterization laboratory, arterial access was obtained via the right and left femoral arteries. Then, two 6 F sheaths were placed in the access sites, and one 6 F pigtail catheter was advanced on a 0.035″ J-tipped guidewire via the left femoral access to the ascending aorta under fluoroscopic guidance. The contrast material was injected via the pigtail catheter to define the location of the pseudoaneurysm (Fig. 3). Thereafter, one 6 F Judkins Right (JR) Catheter was advanced on a 0.035″ J-tipped guidewire via the right femoral access to the ascending aorta and positioned within the pseudoaneurysm. The tip of the pigtail catheter was left in the ascending aorta, and it was connected to the pressure system. Subsequently, the 0.035″ J-tipped guidewire was withdrawn from the JR Catheter and exchanged with a 150 cm super-stiff guidewire, which was fixed in the pseudoaneurysm. Afterward, the JR Catheter was removed.
The next stage saw the preparation of an 18 mm ASO device, as well as its delivery cable and loader, in the same manner as atrial septal defect closure procedures. The right femoral sheath was then removed and exchanged with a long 12 F sheath. The sheath was advanced on the super-stiff guidewire, with its tip within the pseudoaneurysm cavity, before its dilator and the super-stiff guidewire were removed. Next, the loading device was attached to the delivery sheath. Under fluoroscopic and transesophageal echocardiography (TEE) guidance, the device was advanced carefully to minimize contact with the wall of the cavity. When the device reached the tip of the delivery sheath within the pseudoaneurysm, the left atrial disk was deployed under fluoroscopic and TEE guidance by retracting the sheath over the delivery cable. Good apposition was achieved against the rim of the aortic tissue at the edge of the defect. Subsequently, with tension on the delivery cable, the sheath was retracted further to deploy the right atrial disk, parallel with the aortic wall. Before the release of the device, appropriate position and flow limitation were confirmed through an interrogation of all rims with TEE and contrast injection via the pigtail catheter. A fluoroscopy study demonstrated trivial flow from the aorta to the pseudoaneurysm (Fig. 4), and a Doppler interrogation suggested the complete closure of the pseudoaneurysm (Fig. 5). With gentle manipulation, the device was released and the delivery system was removed. Afterward, no complications, including pericardial effusion and compressive effects on the contiguous structures, were illustrated by TEE (Figs. 6,7).
Follow-up: A follow-up echocardiographic examination showed that the device was in the appropriate position with the complete closure of the opening between the pseudoaneurysm and the ascending aorta.
Electrocardiogram-gated CT angiography in the oblique sagittal plane in the same patient one month after successful device closure demonstrated complete thrombosis of the pseudoaneurysm sac (Fig. 8).