A 77-year-old man with progressive pain at rest and cyanosis of his left lower limb was referred to our department for revascularization. At presentation, the patient had end-stage renal disease, diabetic nephropathy, hypertension, dyslipidemia, peripheral artery disease, and chronic heart failure due to severe coronary artery disease. The ankle-brachial index was 0.48 on the right side and 0.35 on the left. A vascular surgeon treated the left common femoral artery occlusion via endoatherectomy. After consultation with the Department of Vascular Surgery, EVT was selected as the treatment method because there was no graftable vein and bypass was likely to be difficult due to the poor quality of the distal run-off vessels.
A Parent Plus60® guiding sheath (Medikit, Tokyo, Japan) was inserted into the left common femoral artery via the ipsilateral antegrade approach. Control angiography showed severe stenosis of the proximal SFA and total occlusion with severe calcification from the middle of the SFA to the proximal popliteal artery (Fig. 1a, b). Furthermore, the popliteal artery was severely stenosed, and the below-the knee vessels were totally occluded (Fig. 1c, d). A 0.014-in. Jupiter FC® guidewire (Boston Scientific, Tokyo, Japan) was initially advanced to the site of the CTO, and the proximal stenotic lesion was dilated using a 4.0 × 15 mm Peripheral Cutting Balloon® (Boston Scientific). A 2.6-F Corsair Armet® microcatheter (Asahi Intec, Aichi, Japan) and Guidezilla2 PV® guide extension catheter (Boston Scientific) were then inserted to achieve stronger backup force. We managed to advance a 0.014-in. Jupiter T45® guidewire with a 45 g tapered wire tip (Boston Scientific) inside the CTO, but its progress was hindered by severe calcification and it could not be advanced beyond the distal SFA (Fig. 2a). A CROSSER® 14S microcatheter (Bard, Tempe, AZ) with a small balloon was also unable to pass through the lesion, and a 0.035-in. knuckle-shaped wire was unable to proceed at all. Retrograde popliteal puncture was then performed with the patient in the supine position (Fig. 2b, c). The middle of the popliteal artery (P2 segment) was punctured with a micropuncture kit (Cook, Tokyo, Japan) under angiographic guidance. After successful puncture, a 0.014-in. Cruise® guidewire (Asahi Intec) was advanced into the popliteal artery, and a 2.6-F Corsair Armet® microcatheter (Asahi Intec) was introduced to support the guidewire using a sheathless technique. A 0.014-in. Jupiter MAX® guidewire with a 100 g tip load (Boston Scientific) was introduced via the retrograde approach. However, the severe calcification prevented it from advancing to the true lumen. Thus, we exchanged Corsair Armet® microcatheter to 6-Fr sheath. And the guidewire was replaced by a 0.035-in. Radifocus wire, which was successfully advanced into the CTO lesion by knuckle wire technique (Fig. 3a). IVUS showed that the retrograde wire was in the subintimal space and that the vessel walls were hardened by severe calcification, suggesting that the CTO lesion would be extremely difficult to negotiate with a guidewire or the controlled antegrade and retrograde subintimal tracking (CART) technique. An attempt to pass a hard guidewire through the lesion via the retrograde approach under IVUS guidance via the antegrade approach was unsuccessful. Therefore, it was decided that re-entry would be attempted using an Outback® Elite catheter via the retrograde approach. The retrograde wire route was then dilated using a 3.0 × 40 mm Bellona® balloon (Medicos Hirata, Osaka, Japan) to enable the advancement of the Outback® Elite catheter (Fig. 3b). The Outback® Elite catheter was advanced to the proximal subintimal space adjacent to the reconstructed area of the proximal true lumen where there were relatively few calcified parts seen on antegrade IVUS (Fig. 3c, d, e, f). Two orthogonal angiographic views were obtained to determine the best direction for the puncture (Fig. 3g, h). IVUS was inserted via the antegrade approach, and the position was adjusted so that the Outback® Elite catheter needle entered the true lumen in which the IVUS transducer was located. A 22G re-entry cannula was inserted into the proximal true lumen in the middle of the SFA. A 0.014-in. Chevalier Universal® guidewire (Cordis, Florida, USA) was successfully advanced into the true lumen and into the antegrade guiding sheath (Fig. 3i, j). After wire externalization, the Outback® Elite catheter was removed and the lesion was dilated using a 4.0 × 220 mm Coyote® balloon (Boston Scientific). Next, a 5.0 × 220 mm Coyote® balloon (Boston Scientific) was dilated over a 10-min period to achieve intravascular hemostasis of the popliteal puncture site (Fig. 4a). After confirmation of good hemostasis, a 6.0 × 150 mm INNOVA® stent (Boston Scientific) was deployed in the SFA lesion (Fig. 4b). Post-dilatation of the whole SFA lesion was performed using a 6.0 × 150 mm SHIDEN HP® balloon (Kaneka, Tokyo, Japan). Final angiography showed appropriate expansion and sufficient antegrade flow (Fig. 4c, d, e, f). There were no major dissections and/or vessel perforation. The patient’s symptoms resolved immediately after the procedure, and there were no complications. The pain at rest was markedly improved, but mild pain at rest remained. The ankle-brachial index improved to 1.4 and the pain at rest was completely resolved after the performance of additional EVT 1 month later for the below-the-knee lesions.