The frequency of involvement of thoracic aorta in Giant cell arteritis has not been accurately reported in the available literature, however it has been considered relatively low. The detection of early involvement of the thoracic aorta by vasculitis is difficult to discern clinically because the aortic inflammation does not produce recognizable symptoms and biopsy of the aorta is not feasible. Based on the available literature, median time from diagnosis of GCA to diagnosis of thoracic and abdominal aortic aneurysm were 10.9 years and 6.3 years, respectively (Marie et al., 2009). No such data is available about IMH secondary to GCA. Our patient had a rare presentation of focal distal transverse aortic arch dilation and an extensive IMH. Patient did not have atherosclerotic disease. As per the literature, fluorodeoxyglucose positron emission tomography can detect aortitis in early stages, however we did not have any CT evidence of aortitis (Borchers & Gershwin, 2012).
Patients presenting with symptomatic large vessel GCA with or without involvement of cranial vessel GCA are typically treated with corticosteroids at the same doses as patients with cranial GCA. Patients with symptomatic large vessel GCA may benefit from higher corticosteroid dose and it may prevent further complications such as aortic dissections or rupture, however it has not been studied or proven in the available literature. The long term evolutions of large artery disease secondary to GCA and its treatment outcomes have been very sparsely reported.
In one prior study, out of 34 patients who had aortitis detected on a routine CT scan at the time of diagnosis of GCA, 9% patients had resolution of aortitis, 47% patients had improvement in aortitis, and 41% patients had stable aortitis at 6 months follow up. Four out of these 34 patients developed of TAA at 16 months of follow up (Nuenninghoff et al., 2003). This and other series have reported that, atleast 40% of patients with TAAs required surgery for TAA resection and/or aortic valve replacement or repair (Borchers & Gershwin, 2012; Evans et al., 1994; Marie et al., 2009) to prevent development of complications such as of aortic dissection or rupture which increase the mortality (Nuenninghoff et al., 2003). Similarly urgent management in warranted in case of IMH to prevent aortic dissection or rupture.
In the latest review discussing the management strategies of 156 histologically proven cases of aortitis, type 3 disease i.e. thoraco-abdominal aortic disease was treated by bypassing and stenting of greater vessels, before carrying out thoracoabdominal aortic repairs to the greater vessels or concurrent prosthetic material bypasses to visceral arteries or left subclavian bypass (Svensson et al., 2015). In our case, we deployed aortic stent graft intentionally covering left subclavian artery after confirming the patent communication of the right and left vertebral arteries at the basilar confluence. This allowed us to effectively exclude the area of focal dilation and intimal irregularity in the distal transverse aortic arch. Even in the absence of CT evidence of active aortitis such as in our case the aorta is expected to be fragile with long standing GCA, hence great care should be taken not to grossly oversize aortic landing zones. TEVAR can be an effective treatment of diseases causing chronic vasculitis such as GCA to prevent continuous destruction of aortic wall and to treat the complications such as rupture, obviating the need for highly morbid open repair and bypass procedures. Thus GCA can present as an intimal injury and intramural hematoma secondary to underlying chronic vasculitis. When endovascular repair is considered, great care should be taken not to grossly oversize aortic landing zones.