Hemobilia results when a splanchnic vessel fistulizes with the intrahepatic or extrahepatic biliary tree. These most commonly result from iatrogenic trauma, though other causes include accidental trauma, gallstones, tumors, inflammation and vascular malformations (Green et al. 2001). Bleeding complications are seen in 2 to 3% of percutaneous transhepatic biliary drainage interventions and most commonly present as bleeding from the drain itself, though perihepatic and gastrointestinal bleeding may occur (Saad et al. 2008). Left-sided percutaneous biliary catheters are associated with greater risk of hepatic arterial injury compared with right-sided ones (Choi et al. 2011). Also challenging scenarios such as diverting biliary drainage when the ducts are decompressed due to leakage or biliary drainage in high bile duct obstruction when specific ducts need to be accessed are expected to have higher likelihood for complications including arterial injuries.
When hemobilia is noted, an appropriate initial step is to ensure proper catheter placement with all catheter side holes inserted within the biliary system. Reversible causes of hemobilia such as coagulopathy should also be assessed. Further workup is guided by history and typically involves esophagogastroduodenoscopy (EGD), CT imaging, and angiography (Green et al. 2001). Hepatic angiography can definitively demonstrate arterial injury including the presence of a fistula between the hepatic artery and bile ducts, portal or hepatic veins.
Antegrade trans arterial embolization (TAE) is a common first-line treatment for hemobilia when conservative management is insufficient, with a reported success rate of 80 to 100% (Saad et al. 2008; Green et al. 2001). Standard antegrade TAE may not be possible due to extreme hepatic vessel tortuosity and altered anatomy by surgery or disease and alternative approaches to embolization are required. In this patient, altered arterial anatomy may be secondary to metastases and prior HAIP chemotherapy. In such cases, the arterial system can be accessed via percutaneous transhepatic approach when no indwelling biliary catheter is present. It has been used for antegrade arterial coil embolization (Tamura et al. 2016), antegrade glue embolization (Venkatanarasimha et al. 2017) and retrograde stent grafting of a dissected common hepatic artery (Papadopoulos et al. 2014). Endoscopic placement of a covered stent in the bile duct across an arteriobiliary fistula can be performed (Kawakami et al. 2014).
In the presence of an indwelling biliary catheter, it can be used as an access to place a covered biliary stent across the arteriobiliary fistula (Tan and Kapoor 2008). Embolization of a right hepatic artery pseudoaneurysm (coil) and the proximal feeding branch (Gelfoam) via an indwelling biliary drain access is reported (Rosen and Rothberg 1982). Trans biliary focal coil embolization of an arteriobiliary fistula in the left hepatic artery when it was accidentally accessed through a right transhepatic approach is reported (Nakagawa et al. 1994).
In coil embolization of arterial injuries, the ideal technique is when the lesion is isolated from both antegrade and retrograde flow by distal and proximal embolization. In this report, a case of an arteriobiliary fistula is successfully coil embolized both distal and proximal to the lesion using a trans biliary approach. This is the first report of such approach.
In conclusion while arteriobiliary fistulae are typically treated with an anterograde endovascular approach, this may not always be possible. Knowledge of unconventional techniques for management of these complex scenarios is helpful to interventional radiologists. This report is intended to introduce a new technique and draw new attention to similar ones already reported.